Risk Management

in Aeronautical Decision Making

Risk management is a formalized way of dealing with hazards. It is the logical process of weighing the potential cost of risks from hazards against the possible benefits of allowing those risks from hazards to stand unmitigated. It is a decision-making process designed to identify hazards systematically, assess the degree of risk, and determine the best course of action. Once risks are identified, they must be assessed. The risk assessment determines the degree of risk (negligible, low, medium, or high) and whether the degree of risk is worth the outcome of the planned activity. If the degree of risk is “acceptable,” the planned activity may then be undertaken. Once the planned activity is started, consideration must then be given whether to continue. Pilots must have preplanned, viable alternatives available in the event the original flight cannot be accomplished as planned.

Two defining elements of risk management are hazard and risk.

  • A hazard is a present condition, event, object, or circumstance that could lead to or contribute to an unplanned or undesired event, such as an accident. It is a source of danger. For example, binding in the antitorque pedals represents a hazard.
  • Risk is the future impact of a hazard that is not controlled or eliminated. It is the possibility of loss or injury. The level of risk is measured by the number of people or resources affected (exposure), the extent of possible loss (severity), and the likelihood of loss (probability).

A hazard can be a real or perceived condition, event, or circumstance that a pilot encounters. Learning how to identify hazards, assess the degree of risk they pose, and determine the best course of action is an important element of a safe flight.

Four Risk Elements

During each flight, decisions must be made regarding events that involve interactions between the four risk elements— the pilot in command (PIC), the aircraft, the environment, and the operation. The decision-making process involves an evaluation of each of these risk elements to achieve an accurate perception of the flight situation. [Figure 14-5]

Figure 14-5. Risk elements to evaluate in decision-making.

Figure 14-5. Risk elements to evaluate in decision-making. [click image to enlarge]

One of the most important decisions that a PIC must make is the go/no-go decision. Evaluating each of these risk elements can help a pilot decide whether a flight should be conducted or continued. In the following situations, the four risk elements and how they affect decision-making are evaluated.

Pilot—A pilot must continually make decisions about personal competency, condition of health, mental and emotional state, level of fatigue, and many other variables. A situation to consider: a pilot is called early in the morning to make a long flight. With only a few hours of sleep and congestion that indicates the possible onset of a cold, is that pilot safe to fly?

Aircraft—A pilot frequently bases decisions to fly on personal evaluations of the aircraft, such as its powerplant, performance, equipment, fuel state, or airworthiness. A situation to consider: en route to an oil rig an hour’s flight from shore, having just passed the shoreline, the pilot notices the oil temperature at the high end of the caution range. Should the pilot continue out to sea or return to the nearest suitable heliport/airport?

Environment—This encompasses many elements unrelated to the pilot or aircraft. It can include such factors as weather, ATC, navigational aids (NAVAID), terrain, takeoff and landing areas, and surrounding obstacles. Weather is one element that can change drastically over time and distance. A situation to consider: a pilot is ferrying a helicopter crosscountry and encounters unexpected low clouds and rain in an area of rising terrain. Does the pilot try to stay under them and scud run, or turn around, stay in the clear, and obtain current weather information?

External Pressures—The interaction between the pilot, the aircraft, and the environment is greatly influenced by the purpose of each flight operation. A pilot must evaluate the three previous areas to decide on the desirability of undertaking or continuing the flight as planned. It is worth asking why the flight is being made, how critical it is to maintain the schedule, and if the trip is worth the risks. A situation to consider: a pilot is tasked to take some technicians into rugged mountains for a routine survey in marginal weather. Would it be preferable to wait for better conditions to ensure a safe flight? How would the priorities change if a pilot were tasked to search for cross-country skiers who had become lost in deep snow and radioed for help?

Assessing Risk

It is important for a pilot to learn how to assess risk. Before a pilot can begin to assess risk, he or she must first perceive the hazard and attendant risk(s). In aviation, experience, training, and education help a pilot learn how to spot hazards quickly and accurately. During flight training, the instructor should point out the hazards and attendant risks to help the student pilot learn to recognize them.

Once a hazard is identified, determining the probability and severity of an accident (level of risk associated with it) becomes the next step. For example, the hazard of binding in the antitorque pedals poses a risk only if the helicopter is flown. If the binding leads to a loss of directional control, the risk is high that it could cause catastrophic damage to the helicopter and the passengers. The pilot learns to identify hazards and how to deal with them when they are incorporated into the training program.

Every flight has hazards and some level of risk associated with it. It is critical that pilots be able to:

  • Differentiate, in advance, between a low-risk flight and a high-risk flight.
  • Establish a review process and develop risk mitigation strategies to address flights throughout that range.

Examining NTSB reports and other accident research can help a pilot to assess risk more effectively. For example, the accident rate decreases by nearly 50 percent once a pilot obtains 100 hours, and continues to decrease until the 1,000 hour level. The data suggest that for the first 500 hours, pilots flying visual flight rules (VFR) at night should establish higher personal limitations than are required by the regulations and, if applicable, apply instrument flying skills in this environment.

Individuals training to be helicopter pilots should remember that the helicopter accident rate is 30 percent higher than the accident rate for fixed-wing aircraft. While many factors contribute to this, students must recognize the small margin of error that exists for helicopter pilots in making critical decisions. In helicopters, certain emergency actions require immediate action by the pilot. In the event of an engine malfunction, failure to immediately lower the collective results in rotor decay and failed autorotation. Fixed wing pilots may have slightly more time to react and establish a controllable descent. According to the General Aviation Joint Steering Committee, the leading causes of accidents in GA are CFIT, weather, runway incursions, pilot decision-making, and loss of control. These causes are referred to as pilot-error, or human factors related, accidents. CFIT, runway incursions, and loss of control type accidents typically occur when the pilot makes a series of bad judgments, which leads to these events. For example, when the pilot has not adequately planned the flight and the pilot subsequently fails to maintain adequate situational awareness to avoid the terrain, a CFIT accident occurs.

While the reasons for individual helicopter incidents vary, it can be argued that it is the helicopter’s flight mode and operational complexity that directly contributes to each incident. By nature of its purpose, a helicopter usually flies closer to terrain than does a fixed-wing aircraft. Subsequently, minimal time exists to avoid CFIT, weather related, or loss of control type incidents that require quick and accurate assessments. Fixed-wing aircraft normally fly at higher altitudes, and are flown from prepared surface to prepared surface. Helicopters are often operated in smaller, confined area-type environments and require continuous pilot control. Helicopter pilots must be aware of what rotor wash can do when landing to a dusty area or prior to starting where lose debris may come in contact with the rotor blades.

Often, the loss of control occurs when the pilot exceeds design or established operating standards, and the resulting situation exceeds pilot capability to handle it successfully. The FAA generally accepts these occurrences as resulting from poor judgment. Likewise, most weather-related accidents are not a result of the weather per se but of a failure of the pilot to avoid a weather phenomenon for which the aircraft is not equipped, or the pilot is not trained to handle. That is, the pilot decides to fly or to continue into conditions beyond pilot capability, commonly considered bad judgment.

It cannot be emphasized enough that the helicopter’s unique capabilities come with increased risk. Since most helicopter operations are conducted by a single pilot, the workload is increased exponentially. Low-level maneuvering flight (a catch-all category for different types of flying close to terrain or obstacles, such as power line patrol, wildlife control, crop dusting, air taxiing, and maneuvering for landing after an instrument approach), is one of the largest single categories of fatal accidents.

Fatal accidents that occur during approach often happen at night or in instrument flight rules (IFR) conditions. Takeoff/ initial climb accidents are frequently due to the pilot’s lack of awareness of the effects of density altitude on aircraft performance or other improper takeoff planning that results in loss of control during or shortly after takeoff. One of the most lethal types of GA flying is attempting VFR flight into instrument meteorological conditions (IMC). Accidents involving poor weather decision-making account for about 4 percent of the total accidents but 14 percent of the fatal mishaps. While weather forecast information has been gradually improving, weather should remain a high priority for every pilot assessing risk.

51l0aN891BL._SX396_BO1,204,203,200_Are you ready to start your journey learning to fly helicopters? Learning to Fly Helicopters, Second Edition, provides details on the technical and practical aspects of rotarywing flight. Written in a conversational style, the book demystifies the art and science of helicopter flying.

Previous post:

Next post: