Hovering

Hovering is a maneuver in which the helicopter is maintained in nearly motionless flight over a reference point at a constant altitude and on a constant heading. Technique To maintain a hover over a point, use sideview and peripheral vision to look for small changes in the helicopter’s attitude and altitude. When these changes are noted, make the necessary control inputs […]

Read the full article →

Vertical Takeoff to a Hover

A vertical takeoff to a hover involves flying the helicopter from the ground vertically to a skid height of two to three feet, while maintaining a constant heading. Once the desired skid height is achieved, the helicopter should remain nearly motionless over a reference point at a constant altitude and on a constant heading. The maneuver requires a high degree of […]

Read the full article →

The Four Fundamentals of Flight

There are four fundamentals of flight upon which all maneuvers are based: straight-and-level flight, turns, climbs, and descents. All controlled flight maneuvers consist of one or more of the four fundamentals of flight. If a student pilot is able to perform these maneuvers well, and the student’s proficiency is based on accurate “feel” and control analysis rather than mechanical movements, the […]

Read the full article →

Helicopter Basic Flight Maneuvers

From the previous chapters, it should be apparent that no two helicopters perform the same way. Even when flying the same model of helicopter, wind, temperature, humidity, weight, and equipment make it difficult to predict just how the helicopter will perform. Therefore, this chapter presents the basic flight maneuvers in a way that would apply to the majority of helicopters. In […]

Read the full article →

Safety In and Around Helicopters – Passengers

All persons boarding a helicopter while its rotors are turning should be taught the safest means of doing so. The pilot in command (PIC) should always brief the passengers prior to engine start to ensure complete understanding of all procedures. The exact procedures may vary slightly from one helicopter model to another, but the following should suffice as a generic guide. […]

Read the full article →

Safety In and Around Helicopters

People have been injured, some fatally, in helicopter accidents that would not have occurred had they been informed of the proper method of boarding or deplaning. [Figure 8-3] A properly briefed passenger should never be endangered by a spinning rotor. The simplest method of avoiding accidents of this sort is to stop the rotors before passengers are boarded or allowed to […]

Read the full article →

Aircraft Servicing

The helicopter rotor blades are usually stopped, and both the aircraft and the refueling unit properly grounded prior to any refueling operation. The pilot should ensure that the proper grade of fuel and the proper additives, when required, are being dispensed. Refueling of a turbine aircraft while the blades are turning, known as “hot refueling,” may be practical for certain […]

Read the full article →

Rotor Safety Considerations

The exposed nature of the main and tail rotors deserves special caution. Exercise extreme care when taxiing near hangars or obstructions since the distance between the rotor blade tips and obstructions is very difficult to judge. [Figure 8-2] In addition, the tail rotor of some helicopters cannot be seen from the cabin. Therefore, when hovering backward or turning in those helicopters, […]

Read the full article →

Helicopter Minimum Equipment Lists (MELs) and Operations with Inoperative Equipment

Title 14 of the Code of Federal Regulations (14 CFR) requires that all aircraft instruments and installed equipment be operative prior to each departure. However, when the Federal Aviation Administration (FAA) adopted the minimum equipment list (MEL) concept for 14 CFR part 91 operations, flights were allowed with inoperative items, as long as the inoperative items were determined to be nonessential […]

Read the full article →

Helicopter Performance Charts – Climb Performance

Most of the factors affecting hover and takeoff performance also affect climb performance. In addition, turbulent air, pilot techniques, and overall condition of the helicopter can cause climb performance to vary. A helicopter flown at the best rate-of-climb speed (VY) obtains the greatest gain in altitude over a given period of time. This speed is normally used during the climb […]

Read the full article →

Helicopter Performance Charts – Hovering Performance

Helicopter performance revolves around whether or not the helicopter can be hovered. More power is required during the hover than in any other flight regime. Obstructions aside, if a hover can be maintained, a takeoff can be made, especially with the additional benefit of translational lift. Hover charts are provided for in ground effect (IGE) hover and out of ground effect […]

Read the full article →