Helicopter Transmission Systems – The Clutch

in Helicopter Components, Sections, and Systems

In a conventional airplane, the engine and propeller are permanently connected. However, in a helicopter there is a different relationship between the engine and the rotor. Because of the greater weight of a rotor in relation to the power of the engine, as compared to the weight of a propeller and the power in an airplane, the rotor must be disconnected from the engine when the starter is engaged. A clutch allows the engine to be started and then gradually pick up the load of the rotor.

Freewheeling turbine engines do not require a separate clutch since the air coupling between the gas producer turbine and the power (takeoff) turbine functions as an air clutch for starting purposes. When the engine is started, there is little resistance from the power turbine. This enables the gasproducer turbine to accelerate to normal idle speed without the load of the transmission and rotor system dragging it down. As the gas pressure increases through the power turbine, the rotor blades begin to turn, slowly at first and then gradually accelerate to normal operating rpm.

On reciprocating and single-shaft turbine engines, a clutch is required to enable engine start. Air, or windmilling starts, are not possible. The two main types of clutches are the centrifugal clutch and the idler or manual clutch.

How the clutch engages the main rotor system during engine start differs between helicopter design. Piston powered helicopters have a means of engaging the clutch manually just as a manual clutch in an automobile. This may be by means of an electric motor that positions a pulley when the engine is at the proper operating condition (oil temperature and pressure in the appropriate range), but it is controlled by a cockpit mounted switch.

Belt Drive Clutch

Some helicopters utilize a belt drive to transmit power from the engine to the transmission. A belt drive consists of a lower pulley attached to the engine, an upper pulley attached to the transmission input shaft, a belt or a set of V-belts, and some means of applying tension to the belts. The belts fit loosely over the upper and lower pulley when there is no tension on the belts. [Figure 4-19]

Figure 4-19. Idler or manual clutch.

Figure 4-19. Idler or manual clutch.

Some aircraft utilize a clutch for starting. This allows the engine to be started without requiring power to turn the transmission. One advantage this concept has is that without a load on the engine starting may be accomplished with minimal throttle application. However, caution should also be used during starting, since rapid or large throttle inputs may cause overspeeds.

Once the engine is running, tension on the belts is gradually increased. When the rotor and engine tachometer needles are superimposed, the rotor and the engine are synchronized, and the clutch is then fully engaged. Advantages of this system include vibration isolation, simple maintenance, and the ability to start and warm up the engine without engaging the rotor. When the clutch is not engaged, engines are very easy to overspeed, resulting in costly inspections and maintenance. Power, or throttle control, is very important in this phase of engine operation.

Centrifugal Clutch

The centrifugal clutch is made up of an inner assembly and an outer drum. The inner assembly, which is connected to the engine driveshaft, consists of shoes lined with material similar to automotive brake linings. At low engine speeds, springs hold the shoes in, so there is no contact with the outer drum, which is attached to the transmission input shaft. As engine speed increases, centrifugal force causes the clutch shoes to move outward and begin sliding against the outer drum. The transmission input shaft begins to rotate, causing the rotor to turn slowly at first, but increasing as the friction increases between the clutch shoes and transmission drum. As rotor speed increases, the rotor tachometer needle shows an increase by moving toward the engine tachometer needle. When the two needles are superimposed, the engine and the rotor are synchronized, indicating the clutch is fully engaged and there is no further slippage of the clutch shoes.

The turbine engine engages the clutch through centrifugal force, as stated above. Unless a rotor brake is used to separate the automatic engagement of the main driveshaft and subsequently the main rotor, the drive shaft turns at the same time as the engine and the inner drum of the freewheeling unit engages gradually to turn the main rotor system.

51l0aN891BL._SX396_BO1,204,203,200_Are you ready to start your journey learning to fly helicopters? Learning to Fly Helicopters, Second Edition, provides details on the technical and practical aspects of rotarywing flight. Written in a conversational style, the book demystifies the art and science of helicopter flying.


Previous post:

Next post: