Helicopter Anti-Icing Systems

in Helicopter Components, Sections, and Systems

Anti-icing is the process of protecting against the formation of frozen contaminant, snow, ice, or slush on a surface.

Engine Anti-Ice

The anti-icing system found on most turbine-powered helicopters uses engine bleed air. Bleed air in turbine engines is compressed air taken from within the engine, after the compressor stage(s) and before the fuel is injected in the burners. The bleed air flows through the inlet guide vanes and to the inlet itself to prevent ice formation on the hollow vanes. A pilot-controlled, electrically operated valve on the compressor controls the air flow. Engine anti-ice systems should be on prior to entry into icing conditions and remain on until exiting those conditions. Use of the engine anti-ice system should always be in accordance with the proper RFM.

Carburetor Icing

Carburetor icing can occur during any phase of flight, but is particularly dangerous when you are using reduced power, such as during a descent. You may not notice it during the descent until you try to add power. Indications of carburetor icing are a decrease in engine rpm or manifold pressure, the carburetor air temperature gauge indicating a temperature outside the safe operating range, and engine roughness. Since changes in rpm or manifold pressure can occur for a number of reasons, closely check the carburetor air temperature gauge when in possible carburetor icing conditions. Carburetor air temperature gauges are marked with a yellow caution arc or green operating arcs. Refer to the FAA-approved RFM for the specific procedure as to when and how to apply carburetor heat. However, in most cases, it is best to keep the needle out of the yellow arc or in the green arc. This is accomplished by using a carburetor heat system that eliminates the ice by routing air across a heat source, such as an exhaust manifold, before it enters the carburetor.

Airframe Anti-Ice

Airframe and rotor anti-icing may be found on some larger helicopters, but it is not common due to the complexity, expense, and weight of such systems. The leading edges of rotors may be heated with bleed air or electrical elements to prevent ice formation. Balance and control problems might arise if ice is allowed to form unevenly on the blades. Research is being done on lightweight ice-phobic (anti-icing) materials or coatings. These materials placed in strategic areas could significantly reduce ice formation and improve performance.

The pitot tube on a helicopter is very susceptible to ice and moisture buildup. To prevent this, pitot tubes are usually equipped with a heating system that uses an electrical element to heat the tube.


Deicing is the process of removing frozen contaminant, snow, ice, and/or slush from a surface. Deicing of the helicopter fuselage and rotor blades is critical prior to starting. Helicopters that are unsheltered by hangars are subject to frost, snow, freezing drizzle, and freezing rain that can cause icing of rotor blades and fuselages, rendering them unflyable until cleaned. Asymmetrical shedding of ice from the blades can lead to component failure, and shedding ice can be dangerous as it may hit any structures or people that are around the helicopter. The tail rotor is very vulnerable to shedding ice damage. Thorough preflight checks should be made before starting the rotor blades and if any ice was removed prior to starting, ensure that the flight controls move freely. While in-flight, helicopters equipped with deicing systems should be activated immediately after entry into an icing condition.

51l0aN891BL._SX396_BO1,204,203,200_Are you ready to start your journey learning to fly helicopters? Learning to Fly Helicopters, Second Edition, provides details on the technical and practical aspects of rotarywing flight. Written in a conversational style, the book demystifies the art and science of helicopter flying.

Previous post:

Next post: